
HermitCore
A Library Operating System for Cloud and High-Performance Computing
Stefan Lankes
RWTH Aachen University, Germany

Pros and Cons of Virtualization Technologies

Advantages

Flexibility (e. g., OS customization)
Performance isolation
Reliability (e. g., checkpointing)
Load balancing via migration

Disadvantages

Complexity and overhead (e. g., nested
page tables)
Double management of ressources

Two schedulers
Two software stacks for I / O handling

Hardware

Host Kernel

Hypervisor

Guest
Kernel

Guest
Kernel

App App App

2 HermitCore | Stefan Lankes | RWTH Aachen University |
24th January 2017

Light-weight Virtualization via Containers

Building virtual borders
namespaces
cgroups

One shared kernel
Host is vulnurable to attacs from wihtin
containers

Why do we prefer a multi-user
multi-tasking environment?
Why doesn’t a user get direct hardware
access?

But we don’t have any problem to
download and to install untrusted code?

Hardware

Shared Kernel

Virtualization Layer

App AppApp

3 HermitCore | Stefan Lankes | RWTH Aachen University |
24th January 2017

Light-weight Virtualization via Containers

Building virtual borders
namespaces
cgroups

One shared kernel
Host is vulnurable to attacs from wihtin
containers

Why do we prefer a multi-user
multi-tasking environment?
Why doesn’t a user get direct hardware
access?

But we don’t have any problem to
download and to install untrusted code?

Hardware

Shared Kernel

Virtualization Layer

App AppApp

3 HermitCore | Stefan Lankes | RWTH Aachen University |
24th January 2017

Unikernels / Library Operating Systems

Basic ideas come from the Exokernel Era
Each process has it own hardware
abstraction layer

Regained relevance
With Qemu / KVM the abstraction layer
is already defined

System calls are a common function call
Single-address space ⇒ single processing

No TLB shoot-down
Minimal overhead

Hardware

Host Kernel

Hypervisor

libOS libOS libOS

App App App

4 HermitCore | Stefan Lankes | RWTH Aachen University |
24th January 2017

Comparison to Related Unikernels

Rump kernels1

Part of NetBSD ⇒ (e. g., NetBSD’s TCP / IP stack is available as library)
Not directly bootable on a standard hypervisor (e. g., KVM)

IncludeOS2

Runs natively on the hardware ⇒ minimal Overhead
Neither 64 bit, nor SMP support (as far as I know)

MirageOS3

Designed for the high-level language OCaml ⇒ uncommon in HPC
OSv

see previous talk

1A. Kantee and J. Cormack. “Rump Kernels – No OS? No Problem!” In: ; login: 2014.
2A. Bratterud et al. “IncludeOS: A Resource Efficient Unikernel for Cloud Services”. In:

7th Int. Conference on Cloud Computing Technology and Science. 2015.
3A. Madhavapeddy et al. “Unikernels: Library Operating Systems for the Cloud”. In:

8th Int. Conference on Architectural Support for Programming Languages and Operating Systems. 2013.
5 HermitCore | Stefan Lankes | RWTH Aachen University |

24th January 2017

Runtime Support

GNU Cross-Compilers for C / C++,
Fortran & Go
64bit, AVX(2), AVX512, SMP. . .
Full C-library support (newlib)
IP interface & BSD sockets (LwIP)

Pthreads
Thread binding at start time
No load balancing ⇒ less housekeeping

OpenMP
iRCCE- & MPI (via SCC-MPICH)

R

1
0

R

3
2

R

5
4

R

7
6

R

9
8

R

11
10

R

13
12

R

15
14

R

17
16

R

19
18

R

21
20

R

23
22

R

25
24

R

27
26

R

29
28

R

31
30

R

33
32

R

35
34

R

37
36

R

39
38

R

41
40

R

43
42

R

45
44

R

47
46

MC 1

MC 0

MC 3

MC 2

FPGA

Router

Tile
MIU MPB

Core 23

Core 22

L2$

L2$

6 HermitCore | Stefan Lankes | RWTH Aachen University |
24th January 2017

OpenMP Runtime

GCC includes a OpenMP Runtime (libgomp)
Reuse synchronization primitives of the Pthread library
Other OpenMP runtimes scales better
In addition, our Pthread library was originally not designed for HPC

Integration of Intel’s OpenMP Runtime
Include its own synchronization primitives
Binary compatible to GCC’s OpenMP Runtime
Changes for the HermitCore support are small

Mostly deactivation of function to define the thread affinity
Transparent usage

For the end-user, no changes in the build process

7 HermitCore | Stefan Lankes | RWTH Aachen University |
24th January 2017

First steps. . .

Binary package

The whole toolchain is available as Debian packages
echo "deb␣[trusted=yes]␣https ://dl.bintray.com/rwth -os/hermitcore
vivid␣main" | sudo tee -a /etc/apt/sources.list
sudo apt -get -qq update
sudo apt -get install binutils -hermit newlib -hermit \

pthread -embedded -hermit gcc -hermit \
libhermit

Afterwards the whole toolchain is located in /opt/hermit/bin

Register HermitCore’s proxy

sudo echo ":hermit:M:7:\\ x42 ::/ opt/hermit/bin/proxy:" \
> /proc/sys/fs/binfmt_misc/register

8 HermitCore | Stefan Lankes | RWTH Aachen University |
24th January 2017

Why is a Proxy Required?

HermitCore defines its own object format
By starting HermitCore application, Linux asks the proxy to handle this request
Proxy is able to load and to start the kernel side-by-side to Linux

Bare-metal execution4

Not part of this talk
Proxy is also able to boot the application within a VM

No changes in the binary required
HERMIT_ISLE defines the NUMA node (bare-metal execution) or the kind of the VM

time HERMIT_ISLE=qemu ./hello

4S. Lankes, S. Pickartz, and J. Breitbart. “HermitCore – A Unikernel for Extreme Scale Computing”. In:
Proc. of the International Workshop on Runtime and Operating Systems for Supercomputers. 2016.
9 HermitCore | Stefan Lankes | RWTH Aachen University |

24th January 2017

Why is the Start Time so High?

View kernel messages to see the boot time of the kernel
time HERMIT_ISLE=qemu HERMIT_VERBOSE =1 ./hello

Qemu needs too much time to initialize

a whole (virtual) PC,
KVM support,
an internal system monitor,
options to debug the system
. . .

Direct integration of the hypervisor into the proxy
time HERMIT_ISLE=uhyve HERMIT_VERBOSE =1 ./hello

Currently, a proof of concept

10 HermitCore | Stefan Lankes | RWTH Aachen University |
24th January 2017

Why is the Start Time so High?

View kernel messages to see the boot time of the kernel
time HERMIT_ISLE=qemu HERMIT_VERBOSE =1 ./hello

Qemu needs too much time to initialize
a whole (virtual) PC,
KVM support,
an internal system monitor,
options to debug the system
. . .

Direct integration of the hypervisor into the proxy
time HERMIT_ISLE=uhyve HERMIT_VERBOSE =1 ./hello

Currently, a proof of concept

10 HermitCore | Stefan Lankes | RWTH Aachen University |
24th January 2017

Why is the Start Time so High?

View kernel messages to see the boot time of the kernel
time HERMIT_ISLE=qemu HERMIT_VERBOSE =1 ./hello

Qemu needs too much time to initialize
a whole (virtual) PC,
KVM support,
an internal system monitor,
options to debug the system
. . .

Direct integration of the hypervisor into the proxy
time HERMIT_ISLE=uhyve HERMIT_VERBOSE =1 ./hello

Currently, a proof of concept

10 HermitCore | Stefan Lankes | RWTH Aachen University |
24th January 2017

Why is the Start Time so High?

View kernel messages to see the boot time of the kernel
time HERMIT_ISLE=qemu HERMIT_VERBOSE =1 ./hello

Qemu needs too much time to initialize
a whole (virtual) PC,
KVM support,
an internal system monitor,
options to debug the system
. . .

Direct integration of the hypervisor into the proxy
time HERMIT_ISLE=uhyve HERMIT_VERBOSE =1 ./hello

Currently, a proof of concept

10 HermitCore | Stefan Lankes | RWTH Aachen University |
24th January 2017

Echo Server Written in Go

func main() {
http.HandleFunc("/", handler)
log.Fatal(http.ListenAndServe(":8000", nil))

}

func handler(w http.ResponseWriter, r *http.Request) {
fmt.Fprintf(w, "%s %s %s\n", r.Method, r.URL, r.Proto)
for k, v := range r.Header {

fmt.Fprintf(w, "Header[%q] = %q\n", k, v)
}
fmt.Fprintf(w, "Host = %q\n", r.Host)
fmt.Fprintf(w, "RemoteAddr = %q\n", r.RemoteAddr)
if err := r.ParseForm(); err != nil {

log.Print(err)
}
for k, v := range r.Form {

fmt.Fprintf(w, "Form[%q] = %q\n", k, v)
}

}

11 HermitCore | Stefan Lankes | RWTH Aachen University |
24th January 2017

Support of compilers beside GCC

Just avoid the standard environment (−ffreestanding)
Set include path to HermitCore’s toolchain
Ensure that the ELF file use HermitCore’s ABI

Patching object files via elfedit
Use the GCC to link the binary
LD = x86_64 -hermit -gcc
#CC = x86_64 -hermit -gcc
#CFLAGS = -O3 -mtune=native -march=native -fopenmp
CC = icc -D__hermit__
CFLAGS = -O3 -xHost -ffreestanding -I$(HERMIT_DIR) -openmp
ELFEDIT = x86_64 -hermit -elfedit

stream.o: stream.c
$(CC) $(CFLAGS) -c -o $@ $<
$(ELFEDIT) --output -osabi HermitCore $@

stream: stream.o
$(LD) -o $@ $< $(LDFLAGS) $(CFLAGS)

12 HermitCore | Stefan Lankes | RWTH Aachen University |
24th January 2017

Operating System Micro-Benchmarks

Test system
Intel Haswell CPUs (E5-2650 v3) clocked at 2.3 GHz
64 GiB DDR4 RAM and 25 MB L3 cache
SpeedStep Technology and TurboMode are deactivated
4.2.5 Linux kernel on Fedora 23 (Workstation Edition)
gcc 5.3.x, AVX- & FMA-Support enabled (−mtune=native)

Results in CPU cycles

System activity HermitCore Linux

getpid() 14 143
sched_yield() 97 370
write() 3520 1079
malloc() 3772 6575
first write access to a page 2014 4007

13 HermitCore | Stefan Lankes | RWTH Aachen University |
24th January 2017

Hourglass Benchmark

Benchmarks reads permanently the time step counter
(Larger) Gaps ⇒ OS takes computation time (e. g., for housekeeping, devices drivers)
Results in CPU cycles

OS Gaps
Avg Max

Linux 69 31068
HermitCore (w/ LwIP) 68 12688
HermitCore (w/o LwIP) 68 376

14 HermitCore | Stefan Lankes | RWTH Aachen University |
24th January 2017

100002000030000

100

102

104

106

Loop time (cycles)

N
um

be
ro

fe
ve

nt
s Linux

100002000030000

100

102

104

106

Loop time (cycles)

N
um

be
ro

fe
ve

nt
s Hermit w LwIP

100002000030000

100

102

104

106

Loop time (cycles)
N

um
be

ro
fe

ve
nt

s Hermit wo LwIP

Outlook

A fast direct access to the interconnect is required
SR-IOV simplifies the coordination between Linux & HermitCore

Core Core

Memory N
IC

Linux

Node 0

Core Core

Memory vN
IC

HermitCore

Node 1

Core Core

Memory vN
IC

HermitCore

Node 2

Core Core

Memory vN
IC

HermitCore

Node 3

V
irt

ua
lI

P
D

ev
ic

e
/

M
es

sa
ge

Pa
ss

in
g

In
te

ra
fc

e

16 HermitCore | Stefan Lankes | RWTH Aachen University |
24th January 2017

Conclusions

Prototype works5

Nearly no OS noise
First performance results are promising
Suitable for Real-Time Computing?
Try it out!

http://www.hermitcore.org

Thank you for your kind attention!

5S. Lankes, S. Pickartz, and J. Breitbart. “HermitCore – A Unikernel for Extreme Scale Computing”. In:
Proc. of the International Workshop on Runtime and Operating Systems for Supercomputers. 2016.
17 HermitCore | Stefan Lankes | RWTH Aachen University |

24th January 2017

http://www.hermitcore.org

Thank you for your kind attention!

Stefan Lankes – slankes@eonerc.rwth-aachen.de

Institute for Automation of Complex Power Systems
E.ON Energy Research Center, RWTH Aachen University
Mathieustraße 10
52074 Aachen

www.acs.eonerc.rwth-aachen.de

mailto:slankes@eonerc.rwth-aachen.de
www.acs.eonerc.rwth-aachen.de

	Title page

