
Towards a Lightweight RDMA Para-Virtualization
for HPC

Shiqing Fan1, Fang Chen1, Holm Rauchfuss1, Nadav Har’El2, Uwe Schilling3,
Nico Struckmann3

1 IT Software Infrastructure Laboratory, Huawei
2 ScyllaDB
3 HLRS, University of Stuttgart

VisorHPC @ HiPEAC 2017

2

Background

● Virtualized HPC and HPC Cloud become

more popular and requires lightweight

solutions (unikernel-like OS)

○ Cloud: Flexibility, Scalability, Reliability, …

○ HPC: Power and extreme speed of

computation and data analysis

● Challenging workloads regarding latency

throughput, may benefit from RDMA

○ RDMA virtualization is required

VisorHPC @ HiPEAC 2017

Why not SR-IOV ?

3

RDMA virtualization: State of the art

vRDMA

▪ Solution from VMWare
▪ Support RDMA API
▪ Supports ESXi platform
▪ Not open source
▪ Public results

● Control Path: RDMA verbs translated to host

● Data Path: RDMA memory mapped to backend driver and RDMA HCA

HyV

▪ Solution from IBM
▪ Support RDMA API
▪ Support Linux guest/host
▪ hypercall for control path
▪ Open source
▪ Public results

Endure

▪ Solution from Microsoft
▪ Support RDMA API
▪ Support Azure cloud and
Windows/Linux guest
▪ Not open source
▪ No public results

VisorHPC @ HiPEAC 2017

4

virtio-rdma: Design Overview

● High bandwidth, low latency

network I/O

● Lightweight, flexible, and portable

● Targeting at unikernel-like OS, OSv:

○ Fast, lightweight, less overhead

○ Bridge Cloud and HPC

● Support socket and RDMA verbs API

● Shared memory for the intra-host

communication

● Support RoCE* and InfiniBand

*RoCE: RDMA over Converged Ethernet

VisorHPC @ HiPEAC 2017

5

virtio-rdma: Control Path

● Re-use the HyV backend driver

○ Ported to a newer Linux kernel

● Guest side implementation on Osv

○ Re-implemented frontend driver,

hypercall

○ Streamlined/minimized OFED support

● Data path: RDMA memory is mapped

directly from guest to host and HCA

○ Completion Queue, Queue Pairs, and

Work Requests

VisorHPC @ HiPEAC 2017

Lightweight, flexible
and portable

6

virtio-rdma: Context Switch

● Context switches are reduced

○ OSv runs application in the same privilege level, single address space

○ No boundary of user/kernel space

○ Less calls to external libraries

○ minimum number of memory copy

○ only a few memory copies are needed for OFED core data structure

VisorHPC @ HiPEAC 2017

Less context switch
&

2-4 copies avoided
per call

7

virtio-rdma: Memory Mapping

● Guest allocate contiguous memory in

virtual address space

● frontend driver remap the virtual address

to guest physical address with chunks

○ HyV needs to take care of the non-

contiguous physical address and the offset in

the page

○ OSv always tries to allocate contiguous mem.

○ virtio-rdma only cares for the offset

● Backend driver remaps the chunks into

host physical address

Hyv on Linux guest

virtio-rdma on OSv

VisorHPC @ HiPEAC 2017

Efficiency on address
translation:

Saved N-3 translation
(N >=3: num of pages)

8

virtio-rdma: Future Work

● Shared memory

○ Based on IVSHMEM

○ Protocol switch in RDMA verbs API

○ Communication buffers, e.g. user memory, shared to the VMs of same host

○ Update RDMA memory regions directly, e.g. Completion Queue

● Socket API support

○ forward to use RDMA and shared memory communications

○ re-implement rsocket or libvma onto OSv

○ no modification to the user application is needed

● HPC Integration

○ Setup the necessary environment via Torque when VM starts

VisorHPC @ HiPEAC 2017

9

Demo

VisorHPC @ HiPEAC 2017

10

Conclusion

● Redesigned and Implemented the new virtio-rdma driver on OSv

○ Compatible with HyV backend driver, i.e. same hypercall

○ Fewer OFED dependencies and fewer context switches

○ Simpler memory translation

○ Flexible and portable for other unikernel-like OS

● Streamlined OFED user libraries and core structures for OSv

● Reused the HyV backend driver and ported it to newer Linux kernel

● HPC Cloud enabled

VisorHPC @ HiPEAC 2017

11

Acknowledgement

● This work is supported by the MIKELANGELO project co-founded by

the European Commission (H2020 framework programme)

● Many thanks to the co-authors

● Special thanks to Jonas Pfefferle at IBM Zurich (author of HyV)

VisorHPC @ HiPEAC 2017

Thank you!

